منابع مشابه
Structure of dimeric F1F0-ATP synthase.
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c(10) ring and the other stator subunits at the F(0)-F(0) dimeric interface. A three-dimensional...
متن کاملATP synthesis driven by proton transport in F1F0-ATP synthase.
Topical questions in ATP synthase research are: (1) how do protons cause subunit rotation and how does rotation generate ATP synthesis from ADP+Pi? (2) How does hydrolysis of ATP generate subunit rotation and how does rotation bring about uphill transport of protons? The finding that ATP synthase is not just an enzyme but rather a unique nanomotor is attracting a diverse group of researchers ke...
متن کاملThe Escherichia coli F1F0 ATP synthase displays biphasic synthesis kinetics.
The F1F0 proton-translocating ATPase/synthase is the primary generator of ATP in most organisms growing aerobically. Kinetic assays of ATP synthesis have been conducted using enzymes from mitochondria and chloroplasts. However, limited data on ATP synthesis by the model Escherichia coli enzyme are available, mostly because of the lack of an efficient and reproducible assay. We have developed an...
متن کاملContribution of extracellular ATP on the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation.
Cell-surface F1F0-ATP synthase was involved in the cell signaling mediating various biological functions. Recently, we found that cell-surface F1F0-ATP synthase plays a role on intracellular triacylglycerol accumulation in adipocytes, and yet, the underlying mechanisms remained largely unknown. In this study, we investigated the role of extracellular ATP on the intracellular triacylglycerol acc...
متن کاملReconstitution of energy-linked activities of the solubilized F1F0 ATP synthase from Bacillus subtilis.
The F1F0 ATP synthases from wild-type Bacillus subtilis and an uncoupler-resistant mutant have comparable subunit structures. In accord with an earlier hypothesis, ATP hydrolysis and ATP-Pi exchange by the two synthases were equally stimulated and inhibited by protonophores, respectively, when reconstituted alone in either wild-type or mutant lipids.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2003
ISSN: 0021-9258
DOI: 10.1074/jbc.c300061200